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MODELLING THE RESPONSE OF THICK COMPOSITE MATERIALS
DUE TO AXISYMMETRIC SHOCK LOADING

I. INTRODUCTION

The potential use of thick composite materials for future naval vessels requires

an understanding of their response to dynamic loadings such as those arising

from impact and underwater explosives. Although numerous investigations

have been conducted on the linear vibration of composite plates [1], little has

been done in the area of response to extreme transient loadings, particularly

when nonlinear behavior associated with material damage is involved. Some

work in the area of material response to uniaxial-strain shock loading has been

done [2-6], including identification of spallation thresholds. Response of the

thick composite due to multi-dimensional deformation type shock loading has

received much less attention.

In this report, we report on our preliminary efforts to develop a methodology

for predicting the response of thick composite materials to multidimensional

shock loadings. Initially we are limiting our consideration to composite

material layups that result in transversely isotropic behavior in the plane of the

fibers. This assumption along with consideration of loadings that are

symmetric about the axis of material symmetry greatly simplifies the fully

three-dimensional problem, while still being of both scientific and practical

interest. The configuration described above is depicted schematically in

Figure 1.1. A principal practical interest in this configuration arises in the

Manuscript approved June 7, 1991.
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Figure 1.1 Configuration for thick composite plate subjected to shock
loading.

study of the explosive bulge test (EBT). The EBT has been used over a long

history [7] to study the deformation and fracture behavior of ship steels under

high rate loadings, particularly the behavior of weldments [8]. The use of the

test continues today [9-10]. Several current studies are underway to use a form

of the EBT to study the response of composite materials to shock loading

[11,12].

Although a complete description of the EBT is not part of the sope of this

paper, it will briefly be described here. The majority of the tests are conducted

underwater since the water can effectively transmit the shock to the plate

surface, and because of its apparent similarity to actual conditions experienced

by structural components subjected to underwater explosives. The plate to be

tested is supported on an anvil having a circular hole in a manner such that the

rear surface of the plate is evacuated. An explosive is placed at a given
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standoff from the submerged side of the plate and detonated electrically.

Instrumentation used during the tests varies somewhat, but recording of

deflection histories of the plate, pressure histories at the front surface, and

strain histories at the rear surface are common.

The material and loading symmetries considered in this paper have practical

interest beyond the consideration of the EBT. In cases where actual

configuration of naval components is such that the layup is transversely

isotropic (or nearly so), the local response to such events as torpedo impact or

shock wave due to a nearby explosive can be appropriately treated using the

configuration considered here as long as the offset distance is much smaller

than the radius of the shell being considered and the events of interest occur

during times such that the outer boundaries can be appropriately considered.

In Section 11, the kinematics associated with the configuration discussed

above are developed along with the equations of motion in the cylindrical

coordinate system specialized for axisymmetric deformation. Section III

contains the development of the material constitutive model. In this

preliminary investigation, the laminated composite material is idealized as a

transversely isotropic, homogeneous linear solid. The subsequent

development of a nonlinear damage model and its applications are presented

in later sections. Material properties are discussed in Section IV. The

computations presented here have been performed using graphite/epoxy as the

model material, both because of present interest in the material and its fairly

extensive characterization at least under static loading conditions. Under high

loading rates, however, experimental data on the material behavior is sparse

[13,14]. Section V provides a brief discussion of loading associated with

underwater explosives. For the purposes of this report, use is made of

empirical formulas to determine amplitude and shape of the shock wave
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loading. A discussion of the numerical method used is included in Section VI.

Explicit integration of the balance equations of mass and momentum is

performed using the computer code PRONTO-2D [15]. Several sample

problems are considered in Section VII to illustrate the methodology

considered for shock response of thick composites. The development of the

damage model is contained in Section VIII and several cases of homogeneous

deformation are considered in Section IX. Finally, preliminary application of

the damage model to the multi-dimensional response to shock loading is

considered in Section X.
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H. KINEMATICS AND EQUATIONS OF MOTION

The kinematics to describe the deformation associated with the configuration

shown in Figure 1.1 is presented in this section. The reference configuration

of the body is defined by particles that occupy position X in that

configuration. The current configuration, x, is defined by the motion, X, such

that

x = X(c,t) (2.1)

Taking the time derivative of (2.1), holding 2C fixed, defines the material

velocity

y ( (2ct)) (2.2)

The velocity gradient

L- (2.3)

can be decomposed into symmetric and anti-symmetric parts

L = D+W, (2.4)
where the skew symmetric tensor _W is the spin tensor. For small strains p - e

so that the strain tensor is defined by

t
E= f Ddt'. (2.5)

0
Referring to cylindrical coordinates, X = (X', X2, X3) = (Z, R, O) and

x = (x , x 2 , x3) = (z, r, 0), for axisymmetric deformation where the motion is

independent of E, X = X (Z, R, t) . The strain tensor, therefore has non-zero

components E 11, E22, £33, and E12 = E21, all of which are independent of 0.

The balance of mass requires that

R= j (2.6)

where p (x, t) and PR (2c) are the mass densities in the current and reference
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configuration respectively and J is the Jacobian of the deformation. Balance

of linear momentum leads to the equation of motion

diva+ pb = p , (2.7)

which, for axisymmetric deformation (neglecting the body force b), reduces

to

D r r +1r z + d V r+r--z +r ( -rr-CO0) = P

(2.8)

rz + a zz 1! dV(

r z -r rz = Pdt



IM. CONSTITUTIVE MODEL

Linear Elastic Model

The generalized Hooke's Law relating stress and strain can be written as

a = c
(3.1)

where C is the fourth-order elasticity tensor, which for completely anisotropic

materials contains 21 independent components. Materials containing three

planes of symmetry are termed orthotropic and contain 9 independent

components. In addition, if there is one plane in which mechanical properties

are equal in all directions, the material is transversely isotropic and the number

of independent material constants is reduced to five.

The composite material under consideration is idealized as transversely

isotropic thus requiring specification of only the five components.

Considering the axisymmetric deformation discussed in Section II, Equation

(3.1) can be written as

011 C11 C 12 C12 0 C 1 1

022 - C 12 C22 C23 0 22 (3.2)

033 C 12 C23 C22 0 C33

012 0 0 0 C44_El2

where the contracted notation has been used for the fourth order tensor C. The

components of C given in terms of the engineering properties are

C- (1 - v 23 ) El 1

S- 23- (2v12 E2 2 )/E 1 1

[C - (vI 2 E2 2)/Ell] E2 2C22 (I+= (v
(1 +v 2 3) [1 - v 23 - (2v 2 E22 )/E 11]

v 12E22

C12 = - (3.3)2 1 - V2 - (2v2E22)/E
1
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[v 23 - (v2 2E22 ) /EII] E22
C23 2+2  + V23 ) [1 - V23- (2v 22E22)/El]

C44 = 2G 12 .

For modelling isotropic materials, only two independent material properties

are required. Thus, specification of the Young's modulus, E, and the Poisson's

ratio, v, is sufficient to characterize the linear ela' Lic behavior of the material.

The stress-strain relations are given by
Cy = Ieij + 2Geij (3.4)

where Ie is the first invariant of the strain tensor, Bij is the Kronecker delta,

Ev
(I +v) (1-2v)' (35)

and
E

G- 2(l+v) (3.6)

Fluid Modelling

For studying problems involving fluid-structure interaction, modelling the

fluid using finite elements offers many advantages over using boundary

element techniques, such as doubly asymptotic approximations (DAA) [17].

Material nonlinearity as well as cavitation can be addressed fairly easily using

finite elements, while either can he modelled only with great difficulty or not

at all with boundary element techniques. In studies of material damage it is

expected that pressures acting in the fluid will be sufficiently high that the

nonlinear fluid behavior is significant. In addition, shock waves propagating

in a fluid and impinging on a flat plate in the configuration of Figure 1.1 can

be expected to result in cavitation as waves reflect back from the free-rear

surface of the solid. The use of non-reflecting boundaries [18,19], discussed

in more detail in Section VI, limits the amount of fluid that must be modelled,

which is often cited as a drawback in using finite-elements to model fluid
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behavior.

* The constitutive model for the fluid is taken as a simple hydrodynamical

model where

where Tl= 1- po/p and p -Ofor TlcZ0.



IV. MATERIAL PROPERTIES

For the simulations conducted in this report the model material used is for a

graphite/epoxy with a transversely isotropic layup. Tsai [16] gives properties

for a graphite/epoxy composite composed of T300 fiber with N5208 matrix.

The properties given are for p, E, and v, which are the in-plane averaged

properties corresponding to E22 and v23, in the notation given in Section III.

The properties given are

p = 1600 kg/m3

E22 = 69.0 x 10' MPa (4.1)

V23 = 0.30.

The through-thickness modulus Ell, the transverse shear modulus, G12 , and
the v21 Poisson's ratio are assumed to be equal to the transverse modulus, the

in-plane shear modulus, and the Poisson's ratio, respectively, of a single ply

given in [16], such that

ElI = 10.3 x 103 MPa

G12 = 7.17 x 103 MPa (4.2)

V21 = 0.28.

For comparative simulations involving steel the properties used are

p = 7779 kg/m3

E = 206.8 x 10' MPa (4.3)
v = 0.30.

Material properties for water, referring to the constitutive model of Section ii,

are given by (with K2=0)

p = 998 kg/m3

Ko = 2.33 x 10' MPa (4.4)

K1 = 1.75.
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V. LOADING CONDITIONS CONSIDERED

The theory of shock waves from underwater explosion has been extensively

treated and is defined primarily by the Kirkwood-Bethe theory [18]. Because

of its complexity, however, Kirkwood-Bethe is infrequently used, and it is

replaced for the most part by semi-empirical scaling laws such as the Arons

[19], which gives the peak pressure of the shock wave in terms of weight of

TNT, W, and distance from the center of charge, R. Pressures from other types

of explosive are commonly determined by defining them in terms of an

equivalent weight of TNT. The scaling law, which has been verified

experimentally over several orders of magnitude is given by

PM = Kp (W"/3/R) . (5.1)

When R is given in meters and W in kilograms, Kp = 5.19x10 4 and Pm is given

in kilopascals. When R is given in feet and W in pounds, KP = 2.16104 and

Pm is given in pounds per square inch. The shape of the shock wave is taken

to have an instantaneous rise with an exponential decay. The pressure is then

given by

t

P(t) = Pme t  (5.2)

where arrival of the wave is taken to be at t = 0. The characteristic time, 0t , is
also given by an Arons scaling law

1 1 -0.22

0t= KtW3 (W/R) (5.3)

where t is given in microseconds. Kt = 92.5 when R is given in meters and W

in kilograms and Kt = 58 when R is in feet and W in pounds. Rogers [20]

reports that (5.3) has been experimentally verified over a smaller range of

values of (W1/3 /R). Problems in using the empirical forms given by (5.1) and

(5.3) are also noted [10] for small offsets. Nevertheless use of the empirical
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forms are sufficient to illustrate the modelling considered in this report,

although caution should be used if these empirical forms are used in trying to

correlate computed results with experimental data. A range of explosive

weights and offset distances is considered in giving the peak pressures and

characteristic times in Tables 5.1 and 5.2, developed from (5.1) and (5.3). As

TABLE 5.1 PEAK PRESSURE (PSI) FOR DIFFERENT EXPLOSIVE
WEIGHTS AND OFFSET DISTANCE

R W (LBS)

LEM D 0 10 5M0 2M I

2 23494 43076 55927 - - - -

5 8342 15295 19859 36411 47273 61377 71504

10 3812 6989 9074 16637 21600 28044 32672

20 1742 3193 4146 7601 9869 12814 14928

50 618 1134 1472 2699 3504 4550 5301

100 283 518 673 1233 1601 2079 2422

200 129 237 307 564 732 950 1107

seen from the tables the peak pressures vary tremendously but the

characteristic time is almost entirely in the range of 10-4 to 10-3 seconds.
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TABLE 5.2 CHARACTERISTIC TIME Ot (MSEC) FOR DIFFERENT EXPLOSIVE
WEIGHTS AND OFFSET DISTANCE

R W (LBS)

Um n m00 5m In 0 3

2 .1229 .1868 .2237 - - - -

5 .1504 .2285 .2737 .4159 .4980 .5963 .6626

10 .1752 .2662 .3187 .4844 .5800 .6945 .7718

20 .2040 .3100 .3712 .5641 .6756 .8089 .8989

50 .2496 .3793 .4542 .6901 .8264 .9896 1.0996

100 .2907 .4417 .5290 .8038 .9626 1.1526 1.2808

200 .3386 .5145 .6161 .9362 1.1211 1.3425 1.4918
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VI. NUMERICAL METHODS

Solution of the balance equations of mass and momentum for the

configuration shown in Figure 1.1 is performed numerically, using the finite-

element computer code PRONTO-2D [15]. PRONTO-2D is a two-

dimensional, explicit integration, finite-element c'de, developed specifically

for solution of transient problems. The code is developed in a Lagrangian

formulation [21]. Simple four-noded quadrilateral uniform strain elements,

with hourglass control [22] are used for the discretization.

In computing the response to shock loading, that is, a loading that produces a

discontinuity in the particle velocity, artificial viscosity [23] must be applied

to the numerical procedure. The effect of artificial viscosity is to smear a

shock front across several elements, thus replacing the shock front with one

that has a rapid but finite rise time. The effect of this smearing of the shock on

the solution is discussed further in the following sections.

The numerical procedure employed also makes use of nonreflecting boundary

conditions [24, 25]. These boundaries are particularly useful for limiting the

extent of fluid to be modelled. Use of a simple free surface would require that

a sufficient volume of fluid be modelled such that reflections off that surface

do not reflect and impinge again on the body of interest. The use of

nonreflecting boundaries, however, are intend-.d to behave as if the fluid

extended to infinity while limiting the actual region to be modelled [25].

Implementation of the nonreflecting boundary for the fluid is accomplished by

applying tractions normal to the boundary such that the stresses at the surface

cancel. The normal stress applied, a., is determined from

a n = pCpVn  (6.1)

where p is the current fluid density, cp is the bulk sound speed in the fluid and

vn is the fluid particle velocity in the direction normal to the boundary.
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The fluid-solid interface is modelled using a contact surface algorithm in

which both media are deformable. The algorithm uses kinematic constraints,

in which the accelerations of the nodes along the surface are modified. Final

accelerations are computed such that one surface may not penetrate the other,

while at the same time establishing constraint forces that conserve

momentum. At each time step the motion is first computed without the

kinematic constraints to determine the extent of contact between the surfaces.

From this computed motion, the penetration forces necessary to satisfy the

kinematic constraints are calculated and used to modify the accelerations.
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VII. NUMERICAL RESULTS FOR SHOCK LOADING

In this section several sample problems are considered in order to illustrate the

methodology considered for addressing the shock response of thick

composites under multi-axial loading. The model composite material used is

graphite/epoxy with the properties given in Section IV. Several comparisons

with steel are presented. Where possible comparisons are also made with

analytical solutions. The problems are intended to illustrate various phases of

the methodology considered here for evaluating multi-dimensional material

response to shock loading, such as fluid-structure interaction, wave

propagation through the material, development of tensile stresses in the

through-thickness direction of the composite and finite-element

discretization.

Plane Wave

The first problem considered is the response of a 25.4 mm thick infinite plate

subjected to a plane wave of temporal distribution given by Equation (5.2).

Since we are interested in normalizing the response only the linear behavior

of the fluid is considered, i.e KI=K2 = 0 in Equation (3.7). The characteristic

time, 0t, is taken to be 0.0001 sec. The finite element model for the problem is

shown in Figure 7.1. The model uses a mesh of 19x19 elements for the fluid,

which is 254 mm in the z-direction, and 39x19 elements for the plate. The

mesh is considered to be fairly coarse and is used here for illustration

purposes. The sides given by r=-0 and r=-r are constrained such that the

velocity vr --0. The plate is free in the z-direction. A uniform spatial pressure

is applied to the outer boundary surface of the fluid and the silent boundary

condition is also applied to this boundary to prevent reflection of the waves

back from the boundary surface after it has reflected off the plate. These

boundary and loading conditions result in a uniaxial deformation field, which

16



could more appropriately be described using a one-dimensional finite-

difference technique. The purpose here, however, is to evaluate the use of the

two-dimensional finite element modelling technique by comparing results

with an analytic solution. The uniaxial deformation allows the problem to be

modelled independent of the size of the mesh in the r-direction, thus a fairly

narrow slice is used as shown in Figure 7.1.

Y x

Figure 7.1 Finite-element discretization for impact of plate by a plane
wave.

ihe analytical solution for the problem described above can be obtained

directly from consideration of transient elastic plane waves in an elastic

media. The wave profile described by Equation (5.2) travels undisturbed

through the fluid at a velocity equal to its sound speed until it encounters the

boundary of the plate. At that point a portion of the wave is transmitted and a

17



portion of it is reflected. The relative fractions of each is governed by the

density and wave velocity of the two media. At the boundary between the two

media the normal stresses must be equal at every instant of time and the

normal particle velocities must be equal. This holds in compression, but when

tension develops across the interface, separation of the fluid from the solid

occurs. The boundary conditions result in the following relationships between

the transmitted, reflected and incident stress wave magnitudes (OT, OR, and al,

respectively)

OT = [(2p'c') / (p'c'+ pc)] aI  (7.1a)

OR = [(p'c'-pc)/ (p'c'+pc)]G I  (7.1b)

where p is the density and c is the wave speed. The primes denote the second

medium, which in this case is the solid, and the unprimed quantities are for the

fluid. The wave speed for the fluid is given by

c = (K0 /p) 1/2 (7.2)

The wave velocity for a transversely isotropic solid is given by

c = (C11/p) 1/ 2  (7.3)

or in the case of an isotropic solid by

c = [(X+2G)/p]1 2  (7.4)

The stress in the fluid is then the sum of the incident and reflected waves and

the stress in the solid is that given by the transmitted wave. Examination of

Equation (7. 1 a), in view of the material properties given in Section IV, shows

that 1.93 times the incident wave would be transmitted to steel, but only 1.46

times the incident wave would be transmitted to the graphite/epoxy.

Implications of this on the ability of the material to withstand shock loading

are discussed later.

The transmitted wave propagates through the solid until it encounters the free

rear surface. Conditions at this boundary can be obtained from Equations

18
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(7.1 a) and (7.1 b) by considering the first medium to be the solid (unprimed)

and the second medium to have p' c' = 0. Thus from Equations (7.1a) and

(7.1 b), the transmitted wave is equal to zero and the reflected wave is equal to

- oa. This wave is superimposed with the incident wave in the solid to give the
total stress in the solid. By applying these boundary conditions for each

interface encountered, the stress history in both the solid and the fluid can be

obtained. These analytical results are shown and compared with the finite

element calculations to illustrate the effects of discretization and artificial

viscosity on numerical accuracy.

Results of the finite-element analysis are given in terms of pressure histories

in the fluid or stress histories in the solid at specific points and then compared

with the analytical results. The first simulation is for the plane wave impinging

on the graphite/epoxy plate. Figure 7.2 shows the computed pressure history

at the element adjacent to the centerline (R--0) and furthest out in the fluid (Z

= -247.00 mm). The idealized shock front now has a finite rise and the decay

exhibits some oscillations, which are numerical in origin. The rise that occurs

after 0.0003 seconds is a result of the reflected wave from the front of the

plate. The analytical solution for the same point in space is also given in Figure

7.2. The computed solution agrees well with the analytic solution concerning

the magnitude of the initial wave as well as the slope of the decay. The

magnitude of the reflected wave is under predicted by the numerical solution.

Figure 7.3 shows the pressure history for the element at the middepth (Z = -

113.00 mm) of the fluid. Spreading of the shock front is more pronounced as

are the numerical oscillations in the decay. The rise at 0.00025 seconds is not

numerical, but is due to the reflection from the face of the plate. The

comparable analytic solution is also given in Figure 7.3. Comparison between

the analytic and numerical solutions is reasonable.
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Figure 7.2 Finite-element and analytical results for pressure at the
boundary of the fluid due to plane shock wave loading on a graphite!
epoxy plate.
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Figure 7.3 Finite-element and analytical results for pressure in the fluid
at z=-113 mm due to plane wave shock loading on a graphite/epoxy
plate.
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The history of the normal component of stress in the z-direction in the solid at

the element closest to the interface (Z = 0.67 mm) with the fluid is shown in

Figure 7.4. The analytic solution is also given in Figure 7.4. Comparison of

the two shows that the finite-element solution under predicts the peak

compressive stress reached at the surface of the plate. The duration of the

compressive pulse, which is directly related to the travel time through the

thickness of the plate, is longer in the numerical solution. The reason for both

of these findings can be traced to the spreading of the shock rise as the wave

propagates through the fluid and subsequently the solid. The similar stress

history for a point at mid-thickness of the plate (Z = 14.04 mm) is shown in

Figure 7.5 for the finite-element and analytic solution, respectively. Here the

under prediction of the compressive stress in the solid is quite significant and

also significant is the fact that the analytical solution is predicting the

existence of fairly large tensile stresses that are almost negligible in the

numerical solution. As seen in comparing the two results is that the frequency

of the oscillations is quite similar between the two with the principal

difference being that the numerical solution is rounding off the wave profiles

that are sharp and distinct in the analytical solution.

For the purposes of comparison, a second simulation conducted using steel as

the plate material is presented. Pressure history results in the fluid from both

the finite-element analysis and the analytical solution are given in Figure 7.6

and Figure 7.7. The principal difference to note in the pressure histories at the

two points in the fluid is the much larger reflected wave that occurs at both

points in the fluid. The stress history near the plate interface, in Figure 7.8

shows that the maximum compressive stress reached is higher than that in the

graphite/epoxy as discussed above. The computed stress at midplane, shown

in Figure 7.9 significantly under predicts the maximum compressive stress

shown in the analytical solution. This is more severe than in the .-ase of the
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Figure 7.4 Finite-element and analytical results for a, near the solid-
fluid interface for the graphite/epoxy plate subjected 'I'o plane shock
wave loading.
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Figure 7.5 Finite-element and analytical results for a. at midthickness
of the graphite/epoxy plate subjected to plane shock wave loading.
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Figure 7.6 Finite-element and analytical results for pressure at the
boundary of the fluid due to plane shock wave loading on a steel plate.

25

100 200 300 400m |



0

Zo

C50

0.0 1.0 2.0 3.0 4.0

t (s) *10 -4

1.2

0.81

0.6--

0.4,

0.2

100 200 300 400
Figure 7.7 Finite-element and analytical results for pressure in the fluid
at z=-113 mm due to plane shock wave loading on a steel plate.
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Figure 7.8 Finite-element and analytical results for Oz, near the solid-
fluid interface for the steel plate subjected to plane shock wave loading.
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Figure 7.9 Finite-element and analytical results for a. at midthickness
of the steel plate subjected to plane shock wave loading.
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graphite/epoxy plates due to the higher wave speed in the steel. The spread out

shock front that occurs in the fluid travels faster through the steel than in the

graphite/epoxy. Thus the reflected wave from the free rear surface of the plate

has already reached the midplane before the spread out compressive wave has

been able to reach its peak value as shown in Figure 7.9.

The results of the comparisons show that the finite-element analysis correctly

predicts the trends seen in the analytical solution. However because of the

coarse discretization employed in the modelling, spreading of the shock wave

occurs which results in under predicted stresses in the plate, which in some

cases is quite significant. It should be noted here, however, that the analytic

solution is based on a linear, elastic, homogeneous solid. Therefore its

application to wave propagation in heterogeneous media cannot account for

dispersion that occurs as a result of differences in the material behavior of the

two phases. In fact the dispersion that takes place in the real composite

material is somewhat similar to the numerical dispersion that occurs as a result

of the artificial viscosity and discretization used in the analysis as discussed in

Section VI. Because of this similarity a viscosity term similar to artificial

viscosity is sometimes employed to mimic the dispersion seen in these

materials [26]. It appears that a finer discretization of the fluid will be required

to prevent spreading of the shock front, particularly when the stresses in the

through thickness direction are of interest. In subsequent computations a

discretization of the fluid is used having a dimension in the z-direction that is

one fourth that used here.

Spherical Wave on an Infinite Plate

The second problem considered is for a spherical wave impinging on an

infinite plate. The temporal distribution of the wave is that given by Equation
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(5.2). The simulation is conducted for steel since analytical results are

available for only isotropic materials. A 25.4 mm thick plate is considered and

the center of the spherical wave is taken as R=O and Z=-257 mm. The

analytical solution is given by Huang [27], and utilizes the Mindlin [28] plate

equations of motion including rotatory inertia and transverse shear terms. The

plate theory considers the normal stress in the z-direction to be zero, which

differs from the finite-element modelling using the two dimensional uniform

strain quadrilaterals, which also permits higher order shear-deformation

through the overall thickness than the Mindlin theory. Nevertheless, the

comparison of the finite-element solution to that given by the analytic solution

is valuable to determine the ability of the modelling procedure to predict plate

response, which is predominately flexural behavior. This represents the

extreme from the problem considered in the preceding subsection, in which no

flexural behavior existed and the response was dominated by through

thickness wave propagation.

The finite-element model for this problem is shown in Figure 7.10. Radially

Figure• 7.1 Finieelmntdseito fo migmn of• ani

. . . . . . . . .. I . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . .

'infinite' plate by a spherical shock wave.

the problem is modelled out to R = 420 mm. Thus the model can be used to

represent an 'inf'nite plate' only until such time that disturbances can

propagate to the outer boundary of the plate and back to the point of interest.

Using the wave velocity computed from Equation (7.4) for steel, this results
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in a time of 0.1448 msec for the center of the plate (R=O). The portion of the

fluid modelled extends to Z = -63.5 mm and uses a mesh of 19 x 59 elements.

The solid uses a mesh of 14 x 99 elements.

Results are given in terms of radial stress at the back surface of the plate

normalized by the peak pressure Pm of the incoming spherical wave. The

history is given in terms of normalized time, t =ct/h, where c is the wave speed

in the fluid, t is time after the wave impinges on the plate, and h is the plate

thickness. The finite-element solution is valid for an inf'mite plate up to ' =

17.4. The computed and analytical results are shown in Figure 7.11. The
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< -HUANG 1974

0 --- COMPUTED
Z

0
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ct/h

Figure 7.11 Computed and analytical results for radial stress in an
infinite plate subjected to a spherical shock wave.

comparison shows good overall agreement, particularly with respect to the

peak radial stress reached. Discrepancies are expected since the finite-element

solution contains through-thickness stress and the analytical solution does not.
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Simply Supported Plate

In this subsection the response of a simply supported plate to a spherical shock

wave is considered. Plates of 25.4 mm and 50.8 mm thicknesses using

properties for both steel and graphite/epoxy are considered in the simulations.

The plates are restrained in the z-direction at the outer three node points along

the upper and lower surface of the plates. This results in an effective plate

diameter of 267 mm. The finite element discretization for the 25.4 mm thick

plate and the 50.8 mm thick plate are shown in Figure 7.12 and Figure 7.13,

Figure 7.12 Finite-element discretization for impingement of a

spherical shock wave on a 25.4 mm thick plate.

respectively. The origin of the spherical wave is at R=0, Z=-245 mm.

Of interest in these simulations is both the early time response as well as the

late time response. Early time response, is taken here to be that part of the

response which is governed by wave propagation in the through-thickness

direction of the plate. The through-thickness stresses are responsible for

spallation or delamination type damage in composite plates. For the 25.4 mm
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Figure 7.13 Finite-element discretization for impingement of a
spherical shock wave on a 50.8 mm thick plate.

this early time is on the order of 50 -100 lisec. The late time-response is that

portion of the response dominated by overall flexure of the plate. It is this

portion of the response that results in matrix cracking, fiber breakage and

overall flexural collapse under sufficient loading. Late-time response can be

estimated by considering the fundamental frequency of the plate with coupled

fluid mass. For the configuration considered here the late-time response

occurs in the range of 0.1-1.0 msec.

For the early time response of the 25.4 mm plate, the stress history at two

elements within the plate will be investigated. The first of these is at R=1.71

mm and Z l0.668 mm, which essentially gives the stress transmitted to the

plate directly below the origin of the spherical loading. The normalized stress

history for both the graphite/epoxy plate and that for a steel plate is given in
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Figure 7.14. As seen in the previous subsection, the stress wave transmitted to
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Figure 7.14 Normalized stress azz near the solid-fluid interface in 25.4
mm thick graphite/epoxy and steel plates subjected to a spherical shock
wave.

the steel plate is significantly higher than that transmitted to the graphite/

epoxy plate. An integration of the stress history over time is a measure of the

momentum density at that location. The z-component of momentum density,

Mz, is given by

M = f to (azrnr + azznz) dt (7.5)

where nr and n. are the components of the unit normal vector in the radial and

through thickness direction, respectively. Considering the stress state at the

surface of the plate, the shear stress is zero and the outer normal is along the

z-direction so that Equation (7.5) reduces to the integration of the normal

stress history in the z-direction over time, which is shown in Figure 7.14.
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Performing the integration, the momentum density transferred to the graphite/

epoxy is approximately 50% of that transferred to the steel. The reduced

amount of momentum density transferred to the plate is significant since the

total momentum must be resisted by stresses within the plate during the

flexural deformation.

The through thickness stress (azz) is also shown for an element that is at the

plate mid-thickness. The stress history for both the steel and graphite/epoxy

plates are shown in Figure 7.15. Of interest here is that, because of the slower
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Figure 7.15 Normalized stress ozz at the midplane of 25.4 mm thick
graphite/epoxy and steel plates subjected to a spherical shock wave.

wave speed in the thickness direction, the graphite/epoxy plate develops

tensile stresses after the reflection of the wave from the rear surface.

The late time response is manifested by the flexural deformation of the plate.
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Figure 7.16 show the deformed geometry of the plate atseveral instants of

Figure 7.16 Deformed geometry of the 25.4 MM thick graphite/epoxy

time. As can be seen the Plate deforms essentially in a fundamental mode ofvibration. The boundary conditions at the edge Of the plate simulate a simplysupported restraint as rotation of the midplane is evident. The restraint of justthree node points along top and bottom surfaces does however result in very
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high local stresses in the region of the restraint. In simulation of the EBT it

would be preferable to use a contact surface support over the length of plate

that is actually restrained. The radial stress history at the rear surface of the

plate is shown for both steel and graphite/epoxy in Figure 7.17. The
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Figure 7.17 Normalized stress Orr at the rear surface of 25.4 mm thick
graphite/epoxy and steel plates subjected to a spherical shock wave.

alternating tensile and compressive stresses at the point again shows that the

plate is vibrating in essentially its fundamental mode. The maximum stress

level reached is slightly higher in the steel. Maximum elastic deflection in the

graphite/epoxy plate is 2.79 times that in the steel, but of course, the weight of

the steel is 5 times that of the graphite/epoxy.

The response of the 50.8 mm thick graphite/epoxy plate is considered next.

The plate has the same boundary conditions and is subjected to the same

loading as the 25.4 mm thick plate. The normal stress at the plate surface is

shown in Figure 7.18. Comparing the pulse to that shown in Figure 7.13 for

the 25.4 mm graphite/epoxy plate shows it to be longer due to the longer time
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Figure 7.18 Normalized stress azz at the solid-fluid interface of a 50.8
mm thick graphite/epoxy plate subjected to a spherical shock wave.

for the wave to travel to the rear surface and back to the front. The normal

stress at the mid-plane of the plate thickness is shown in Figure 7.19. Of

particular importance is that now the tensile stresses that develop are

significantly larger than those that develop in the 25.4 mm thick plate, and are

approximately 0.75 times the magnitude of the incoming wave. Thus for

thicknesses larger than 50.8 mm, tensile stresses approaching the magnitude

of the incoming wave would be expected. The late time response of the 50.8

mm plate is illustrated through the sequence of deformed geometry plots

shown in Figure 7.20. The maximum deflection in the 50.8 mm graphite/

epoxy plate is 0.358 times that of the 25.4 mm graphite/epoxy plate or

approximately the same as that of the 25.4 mm steel plate. The radial stress

history at the center of the rear surface of the plate is shown in Figure 7.21.
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Comparison with Figure 7.17 shows the maximum stresses to be one-half that

of the thinner plate.
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Figure 7.19 Normalized stress a. at the midplane of a 50.8 mm thic
graphite/epoxy plate subjected to a spherical shock wave.
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Figure 7.21 Normalized stress rr at the rear surface of a 50.8 mm
graphitelepoxy plate subjected to spherical shock wave.
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VHI. DEVELOPMENT OF TE DAMAGE MODEL

A continuum damage model (CDM) is developed to simulate the onset of

damage and the subsequent softening effects of various degradation

mechanisms. This capability will be useful to design tests, to analyze test data,

and to simulate various operating or threat conditions. There is a fairly large

literature in CDM and some of that work is followed in the development given

here. In particular, the works of Davison and Stevens [29], Krajcinovic [30],

and Talreja [31], with appropriate simplifications and extensions, are used for

guidance.

A distributed or continuous damage model is particularly appropriate for

composite materials because of their tendency to arrest propagating flaws,

soften and redistribute the loads. At high loading rates, even delamination

phenomena, which might behave as single fracture planes on slow loading,

tend to disperse into a distributed pattern of small cracks which cannot run as

fast as the loading process progresses and which may be amenable to

modeling by a CDM approach. The model described here is linear in strain,

but nonlinear in damage due to softening effects.

Material Description

This damage model is restricted to a thick laminated composite material, a

portion of which is shown in Figure 8.1, with no fiber reinforcement in the 1-

direction (through-thickness and generally the wave propagation direction)

and a balanced (isotropic) arrangement of reinforcing fibers in the 2,3-plane

(in-plane). The material is assumed to be exactly transversely isotropic with

respect to both stiffnesses and developing damage with the 2,3-plane being the

plane of isotropy. This material symmetry is attained approximately by the

usual filament wound or flat layup composites with balanced 00, ±t60 (as in

Figure 8.1) or 0, 900, ±450 layups. The approximation of transverse isotropy

42



is, of course, much better for stiffnesses, but is also imposed on damage

development in this treatment.

.60"

600

2 3

Figure 8.1 Portion of a 0, ±60°, transversely isotropic layup.

Damage DescrDtion

The evolving modes of damage are restricted to certain orientations of brittle

cracking of the matrix material. A simple maximum strain criterion is used for

fiber breakage with no allowance for evolution. The matrix damage is

characterized by the vector V=(V I,V2,V3) referred to the material coordinate

system shown in Figure 8.1 with the indices denoting direction of the

prevailing normal to the plane of the cracks and the magnitudes denoting a

measure of the severity of the damage. This severity might take the form of a

normalized local areal density of crack surfaces. However, in the present

phenomenological treatment, damage magnitude is interpreted simply in

terms of fractional reduction of certain elastic properties of the material.
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The V1 component of damage is intended to represent a network of matrix

cracking predominately aligned in the 2,3-plane (with normals in the 1-

direction) which do not cross reinforcing fibers and which lead ultimately to

delamination failure. It is intended that V, damage will describe spallation

damage due to through-thickness waves and the progression of damage

leading to complete separation due to spallation. A state of V1 damage is

shown schematically in Figure 8.2.

Figure 8.2 V1 delamination damage.

The remaining matrix damage is characterized by a combination of V2 and V3

damage. This is due to matrix cracks which may traverse or lie between

reinforcing fibers, but which do not break the fibers. This damage is assumed

to occur in a randomly distributed fashion both spatially and by orientation (by

combinations of V2 and V3) of normals in the 2,3-plane such that the degraded

material properties are left transversely isotropic. Such will be the case if the

average degradation is independent of the orientation of the V2, V3

components of the damage vector. This is assumed to be the case and, further,

that the material property degradation depends only on the magnitude
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of the in-plane components of the damage vector. Thus, the in-plane damage

Vs is characterized by a scalar with indefinite direction, except that it is

oriented perpendicular to the V1 component of damage. The V1 and Vs

damages are contrasted also with regard to their evolution to very different end

states. Whereas the V1 damage evolves, perhaps catastrophically, to a

delamination or spallation with complete separation, the Vs damage evolves

to a spatially saturated state of damage defined by Vs=I and is followed by

other modes of damage (either fiber breakage or further delamination

damage). The Vs damage is shown schematically in Figure 8.3.

Figure 8.3 Vs in-plane matrix damage.

Material Model

Talreja's [31] development for vector damage in a transversely isotropic

material is followed here. The assumption of small damage is relaxed since the

full evolution of damage to an end state is sought. The material response is

further restricted to axisymmetry with the 1 -axis being the axis of symmetry
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and with the 2- and 3-directions now being identified with r (radial) and 0

(circumferential) cylindrical coordinates. Placing small strain and reflection

symmetry requirements (independent of sign of V1 and Vs) on V, leads to a

Helmholtz free energy function

p = f (11, 12 ,..., 16) (8.2)

of the strain and damage invariants
I 1 = £ll

12 = E22 + E33

13 = E2 + e 2

3 22 33
1 = E2 (8.3)
14 12

15 = V2
5 2

6 5

The stress tensor components result from the derivatives ajj=a(pW) /cij and are

expressed in the usual transversely isotropic, axisymmetric, linear constitutive

form as

011 Cll C12 C12 0 Cl11

022 - C 12 C 2 2 C 2 3 0 E22 (8.4)

033 C 12 C23 C22 0 E33

012J 0 0 0 C44  12

where the elastic coefficients Cij are functions of the damage invariants

15=V 1
2 and I6=Vs 2. To facilitate simple assumptions on damage dependence,

(8.4) is inverteA to the following compliance form

£ l/E 1 1  -V1 2 /Ell -V1 2 /El 1  0 C11

£ 22 -V 1 / l I/E 22  -V 2 3 /E 2 2  0 0 22 (8.5)
£33 -v 12 /Ell -v 2 3/E 22  1/E 22  0 033

C£12 0 0 0 1/(2G12 ) 012
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where

= (1 -v 23 ) E 1
1-v23 12E22 1

[1 - (v12 E22 )/E 1 ] E22
C22 =

(1 +v 23 ) [1 - v 23 - (2v 22E

v12E22)
12 1 - v 2 3 - (2v 2 E2 2 )/E 1 (

[V 23 - (v22E22 ) /El] E22

C23 1=2 / ,]

(1 +v 23 ) [1 - v 23 - (2v22 E2 2 )/Ell]

C44 = 2G 1 2 .

The damage dependence is imposed on the compliances in (8.5) since they

allow a more intuitive interpretation of damage effect than do the elastic

coefficients Cij in (8.4). This can be assumed in a general functional form, to

be set by experimental evidence. However, for the sake of demonstrating

possible damage effects on constitutive behavior, the following simple

damage dependences are assumed:

E1  (I (-V ) E 0

E22  1 (S O~iV 2 2

G (1-V 2) (-aV2 )G0(87
1 1 c 2 V SG 12 (87

V = (l -V) (I -a 3 V2)v

23 (l-o 4V2) 23
where the superscript "0" denotes virgin properties and the fractions 0<ai<l,

i=1,4 are included to prevent complete loss of material integrity as the

saturation state Vs-+I is reached. Integrity may remain due to unbroken

reinforcing fibers in the 2,3-plane. The particular functional dependence on V1
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and Vs in (8.7) is quite arbitrary except for the fact that the E,1 and E22

dependence can be taken to define V1 and Vs and, in such case, the remaining

functions should be determined by corresponding experimental evidence of

material degradation effects on those other material properties. The elastic

coefficient dependence on damage is then determined by combining (8.7) with

(8.6).

Damage Evolution

Rate dependency (actually, time dependency) is introduced into the CDM

process by way of damage evolution with assumed dependence on the current

state of damage, some overstress above a current threshold, and material

properties controlling evolution rates. There is such a sparsity of data on
damage evolution that guidance depends mostly on general intuition and

awaits definitive experiments. Curran, et al, [32] give extensive consideration

to evolution (growth) and nucleation of voids and Krajcinovic [30], in a

review article, addresses the range of possible kinetic laws for damage

evolution. The intended application here is to composite materials which

usually abound with imperfection sites from which cracks can grow. Thus,

nucleation of new cracks is not addressed here and the focus is on growth or

evolution of damage.

Both the V1 and Vs types of damage are assumed to be governed by a

threshold of the form

F( _, f (V)) 5 0 for no damage growth (8.8)

> 0 for damage growth
where F is a scalar threshold function, a is the current stress tensor, f is an

array of current threshold parameters, which is a function of V, the current

damage vector. The details of this threshold function are illustrated with the

following specific example.

48



A hyperbolic threshold surface of the Mohr-Coulomb type is taken to be

dependent on the stresses a, , (tension and shear) as follows:

F(6,f) = l + (1r/f 3) 2 - (fl-)/f 2  (8.9)

where the parameters I are related to specific growth threshold strengths and

the Coulomb friction tangent as
CYO = flI- f2

1G = f3j(fl/f 2 ) 2 - 1 (8.10)

OG-= f3/f2.-
These tension and shear growth thresholds and the Coulomb friction tangent

in (8.10) are assumed to be functions of the damage V, (or Vs). The threshold

surface F=G from (8.9) is shown in Figure 8.4 along with parameters and the

shortest distance d from an external stress state (aj) to the threshold surface.

For example to complete the threshold specification, the V1 delamination

damage threshold is postulated to depend only on the stress components

(8.11)
'r =0(12.

The growth threshold stress and Coulomb friction tangent in (8.10) are

postulated to depend on the damage V, as

2

CYGI = (I1-V2)OGI0

( I _1 V 2 ) 1G0(8.12)

GOl = GlO+ vI(OGl1GlO)
where the "0" subscript denotes virgin (V{=0) threshold properties. These

simple functions are designed so that all resistance to damage is lost as VI-I

and so that the friction tangent can vary linearly with V12 as damage

progresses. The f dependence on V is then established by combining (8.10)
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Figure 8.4 Threshold surface for the onset of damage.
hnd (8.12) Tlhe evolution (or rate) equations for tlle damage are reqpoirent to
complete this CDM constitutive description. For the VI-damage, it is further

postulated that the material derivative takes the form

dVi = F, (dj, V )  (8.13)

where d11 is the shortest distance in the r"-- 01 x-c2 stress space from an
exterior stress point to the threshold surface F=0 shown in Figure 8.4. F, inI
(8.13) should vanish for dl---0, making dV,/dt=0 for all stress points interior to

or on the threshold surface. For purposes of illustration, (8.13) is written in the
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specific power law form

dV 1
- = (dl/a OG 1/[71l (1-V2)] (8.14)

where n1 is a positive power term for dl/OG1O, the dimensionless stress

distance, i I is a time constant governing the rate mag Lide, and the 1/(-V 1 2)

term causes an acceleration of VI damage to complete delamination as VI - 1.

In general, the rate of damage may be a function of the location a in the stress

space and the separation from the threshold surface. For example, it could be

expected that shear-induced damage under compressive stress will progress

much more slowly than will tensile stress-induced damage.

The Vs in-plane isotropic damage is postulated to depend only on the stress

components

0 = 2(022+033)

(o.15)

£112 + ( 22- 033)•

These quantities are derived from certain invariants of the stress tensor in

absence of the aI component. This stress component has been ignored for

simplification and because its effect is a sensitive function of Poisson's ratio

coupling which is very uncertain at this level of approximation of material

property evolution. Similarly, the 022 and 033 stress components were ignored

in their possible effect on V1-damage evolution in (8.11). The stress

components a, t in (8.15) are used in the threshold condition (8.9) to establish

a distance ds to the threshold surface. The threshold parameters ? are again

given by (8.10) and the remaining quantities, to set the Vs evolution, follow.

Since the ' s damage consists of an ever denser network of cracks which tends

to saturate, the evolution equation for Vs is postulated to be

dVs
= FS (ds, VS) (8.16)
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with weak dependence on Vs . That is, no acceleration to a catastrophic failure,

as in the case of V 1-*1. In fact, for purposes of illustration, take
dVsd-i = (ds/GSO) ns/TIS (8.17)

with no explicit dependence on VS and where ns is again a time constant, ds

is normalized with the virgin growth threshold stress 0 GSO, corresponding to

a in (8.15), and ns is a positive power term for the dimensionless stress

distance. Saturation can be forced through the growth thresholds as

rGS = 0GS 0/(I-VS)

T GS = qGSO/( 1 - VS) (8.18)

2
GS = OGSO +VS (OGS I - GSO)

so that VS damage is increasingly difficult to drive as Vs-4 1. This is only one

possible form of the threshold functions. In the following section, another

threshold form for VS damage is considered, which may more closely

represent the available experimental data.

The third mode of damage involves reinforcing fiber breakage and it may also,

in general, be rate dependent due to statistical distributions of fiber strengths.

For high fiber volume fraction and load aligned with the fibers, it has been

found that there is very little rate dependence (see Harding and Welsh [13]).

In keeping with the simplifications and assumptions which have already been

made, a simple maximum strain criterion for fiber breakage is used here. It is

influenced by continuum damage evolution only through the softening effects

of V1 and VS damage upon the composite deformation.
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IX. DAMAGE MODEL RESULTS FOR HOMOGENEOUS
DEFORMATION

The damage model, as developed in Section VIII, is exercised for spatially

homogeneous strain fields and for various strain rates and transients.

Predictions are compared with experimental observations to set damage

material properties and to test the versatility of the CDM approach.

Composites of interest to this program do not have a strong coupling between

the V1 and Vs modes of damage due to weak Poisson's ratio coupling between

the deformations which drive each of the damage types. As a result, combined

damage is not expected except in biaxial or triaxial deformation fields where

each mode of damage is individually driven by appropriate components of the

deformation. For the sake of simplicity, and to utilize available experimental

data, some simpler uniaxial deformation fields are considered in this section.

The first case to be considered involves various constant strain rates causing

Vs in-plane damage. Analyses and experiments on these cases are useful to

help isolate the effect of strain rate on damage and deformation. It especially

should be noted that the current CDM has no explicit dependence on rates.

Rather, the rate dependence will manifest itself through time required for

evolution of the underlying damaging and softening processes.

The second case involves V1 damage. Delamination, or V1 damage, is difficult

to monitor in slow rate tests and is usually absent or catastrophic such that

intermediate states are rarely seen. Impact and spallation tests are most

appropriate for controlled levels of delamination damage. These tests do

involve wide variations of deformation rates and may be subject to qualitative

judgements on the state of damage. Simulations of deformation histories

expected in wave traversals are used to generate predicted damage, which is

then compared with experimental evidence for spallation damage thresholds.
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Constant Strain Rate Tests

Recent data has been obtained by Behler, Sikordki, and Staskewitsch [14] for

graphite/epoxy composites subjected to a wide range of constant strain rate

loadings. These experiments were done in a cantilever configuration with

impact furnishing the higher loading rates and hydraulic loading for the lower

rates. This arrangement does not precisely match the symmetries required for

transversely isotropic Vs damage since these tests are approximately uniaxial

flexural stress loadings with matrix cracking expected to be orientated

predominately with normals parallel to the tensile stress direction. Also, these

certainly are not homogeneous deformation fields. However, the comparison

of experiment with CDM prediction is made anyway because it is thought that

the general behavior of damage evolution in the uniaxial flexural tests may be

quite similar to that for a homogeneous biaxial deformation field.

The material of most interest here, which was tested by Behler, et al [14], is a

multidirectionally reinforced graphite/epoxy consisting of a balanced 00, 900,

±450 layup with T800 graphite fibers and Vicotex 6376 epoxy. The test

specimens measured 6 mm x 6 mm x 45 mm. The ends of the cantilever

specimens were struck with a hammer device on a flywheel which was

hydraulically driven for low impact velocities (2x 10-4 m/sec to I m/sec) and

was electrically driven for higher impact velocities (5 m/sec to 50 m/sec). The

specimens were monitored by strain gauges on the compression and tension

sides and resulting strain rates ranged from 5x10 -3 sec-1 up to 1200 sec "1.

While the deformation field varies through the thickness, the maximum strain

and damage is expected to be localized about the outer fibers on the tension

side and that response is compared with the CDM predictions. These

experimental results are reproduced in Figure 9.1. Definite strengthening and

stiffening with increased loading rate is seen, however, little variation in

ultimate strain is indicated. The predominate softening mechanism is assumed
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Figure 9.1 Flexural impact data for graphite/epoxy (Behler, et al[14]).

to be due to matrix cracking with only the inal curvature near the breay ig

point being due to some evolutionary behavior in the fiber fracture.

The damage model in Section VIII is applied to biaxial deformation with

, 1--0 and E22---E33 with these strains being at the constant rates shown in

Figure 9.1. The first attempt is with a model that has a finite threshold for the

virgin state of no damage (Vs--0) as in (8.18) with GGSO being the initial

threshold and, beyond this threshold, the damage evolves according to

(8.17).The pertinent material properties are given in Table 9.1.
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Table 9.1 Material Properties for Damage

Threshold Model A

EI (MPa) 10,000
E0, (MPa) 75,000

v°  0.04
17

v° 0.30

(Llft 3  0.75

a4  0.95

ns 1

ils (sec) 10-5

CGSO (MPa) 950

The damage Threshold Model A refers to the threshold stress in the in plane

direction given by the function of damage Vs as in (8.18) or

0 GS GSO S/(1 V2 ) . (9.1)

These properties and this threshold model are combined with the evolution

equation (8.17), where for the assumed symmetries in this deformation,

ds - Maximum [0, c22 - CGS ] * (9.2)

The elastic properties in Table 9.1(E0 1 , E° v0 and v3) are chosen to be1 22' 2 23
representative of a balanced layup of graphite/epoxy. The fractional

reductions (a], a3, and a4) are chosen very arbitrarily to attempt to reflect the

elastic integrity remaining in a saturated matrix cracked state due to the intact

fiber reinforcements. The exponent power was left at ns=l under the

assumption that the stress, over a threshold, drives the damage. This left is
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and aGSO as the adjustable parameters in the CDM to attempt to match the

experimental results in Figure 9.1. The approach taken was to adjust the virgin

threshold to account for the apparent breakpoint for softening in the fastest

three loading paths. That is, the 950 MPa value in Table 9.1 represents the

022=o33 stress point, on initial loading, below which absolutely no Vs damage

occurs. Then the rate parameter nS was adjusted to best fit the softening

behavior.

The results are shown in Figure 9.2 where the CDM prediction with Threshold

Model A (defined by Table 9.1 and Equation (9.1)) are compared individually

with each of the stress-strain curves from Figure 9.1. This comparison is quite

favorable at high strain rates with the threshold and softening behavior

allowing the predicted stress-strain curve to somewhat follow the

experimental curves. Especially the 1200 sec"1 comparison shows a small

amount of softening at the upper end, which follows the experimental data

nicely. These calculations were run out to a fixed strain of 0.015 (for a rate

independent fiber failure criterion) and terminated. The final stages of

softening on the 1200 sec-1 curve may be predominately due to evolution of

fiber breakage, which is not accounted for in this CDM. At rates below 0.85

sec1, the predicted curves become almost exactly bilinear and invariant with

respect to rate. At these slow rates, the threshold moves with the loading and

the damage evolution is in a condition of quasi-static equilibrium. That is, the

damage will cease to increase immediately if the loading ceases to increase.

The nonzero virgin threshold stress is seen to fail rather badly for the lowest

(0.005 sec-1 ) rate of loading, which exhibits apparent softening for any

nonzero loads. These observations form the basis for another threshold model,

which follows, and which attempts to more directly fit the raw data from

Figure 9.1.
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Figure 9.2 Threshold Model A correlations with data of Figure 9.1.
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Since it is expected that the loading stress and the threshold stress

approximately coincide for low loading rates, the 0.005 sec-1 data of Figure

9.1 was fit directly by a least squares routine to the threshold stress. This was

done by estimating the actual damage from the reduced modulus on this

loading path and then expressing the stress as a function of damage (rather

than strain). The required material properties to define this model are listed in

Table 9.2

Table 9.2 Material properties for Damage

Threshold Model B

E 1 , (MPa) 10,000

E0, (MPa) 75,000

v°  0.04

v° 0.30

al=a3  0.75

a4  0.95

ns  1

ins (sec) 0.0014

aGSO (MPa) 170

This Threshold Model B has an in-plane threshold function given by

GGS = OGSOVS ( I + 31VS - 2 9 VS) . (9.3)

This form does not saturate as Vs-41 (where OGS-* 3 GSO), but GS does

closely follow 022 for the slowest (0.005 sec-" ) rate loading. 0 GSO was adjusted

to achieve this agreement and then the rate constant Is was adjusted to best

match the 56 sec"I test data. In Figure 9.3, comparisons with experiment are
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Figure 9.3 Threshold Model B correlations with data of Figure 9.1.
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shown.

This Threshold Model B is seen in to fit a wide range of data very well.

Deficiencies are present at the later stages of loading where fiber failure is

probably dominating the detailed softening and, as in Figure 9.2, for all strain

rates at least below 0.85 sec"1 the model predictions are invariant with respect

to rate. As a result, the agreement is quite poor for the 0.85 sec1 data. Possible

explanations are 1) that another slow mechanism of softening should be

present as an additive factor in oGS (perhaps viscoelastic deformation) or 2)

that the data itself should be rate invariant at these low rates. Conclusions will

have to await further experimentation and study.

Wave and Spallation Simulation

The most appropriate experiments for validation of this damage model for

delamination or spallation damage, of the type shown in Figure 8.2, are planar

impact by a flyer plate onto a material sample with no backing. This

configuration gives rise to a transient tensile pulse due to the release wave

emanating from the stress free back face. Such tests and their assessments are

in progress under this program and will be reported at a later time. For the

purpose of an immediate comparison of spallation predictions with

experiments, Roylance [3] gave qualitative results of spallation thresholds in

graphite/epoxy for variation of incident pulse shapes and those conclusions

will be tested here against simulated wave deformations in the form of

homogeneous fields. Roylance's results are not detailed enough to allow

determination of damage variables, as was done in the preceding subsection

for the Vs damage, and so only a cursory application of the model with

estimated properties will be given here to demonstrate the behavior of

spallation or V! damage predictions under transient loading.

Roylance in [3] considered a variety of graphite reinforcing fibers (Pluton,

61



Hercules, and Celanese) in an American Cyanamid BP907 epoxy and reported

mainly longitudinal (fiber direction) properties. Transverse direction

properties (1-direction from Figure 8.1) are of the most interest here for

spallation damage and, hence, the epoxy bonding properties, rather than the

fiber properties are thought to be most important. Indeed, Roylance found no

dependence of spallation threshold on the graphite fiber type, even though the

longitudinal fiber strengths and moduli were reported in [3] to vary

considerably. As a result, the choice was made here to use representative

graphite/epoxy properties with the realization that the following results are

most sensitive to the transverse directional properties. These properties are

listed in Table 9.3 along with V1 damage properties. These damage properties

Table 9.3 Material properties for spallation

simulation

E01 (MPa) 10,300

E02 (MPa) 69,000

v° 0.04

vO 0.30

a~l=a 3  0.75

a4  0.95

n1  2

,h (sec) 4xlO"6

c;Gj0 (MPa) 50

are being found to work well in correlating impact test data in ongoing and yet
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to be reported work and they will be used here also for the purpose of

illustrating the model and comparing with Roylance's results, to the extent of

interpreting spallation thresholds.

Symmetries in the configuration of interest allow a reduction to uniaxial strain

in the 1-direction with the first of (8.12) specifying the tensile threshold aG1

and (8.14) the evolution equation for V1 damage. In fact, the symmetries allow

the distance from the damage threshold to be written as dj=Max[0,o1 1-oG 1].

The homogeneous deformations are specified through the only nonzero strain

component EII as a function of time for all points in space.

The first case considered is various constant strain rates from a state of zero

deformation into tension. This is done to illustrate the rate-dependent behavior

of the damage model and to compare with Figures 9.2 and 9.3 for Vs damage.

These results are seen in Figure 9.4 where both the stress versus strain and

damage versus strain are seen for a wide range of constant strain rates.

Obviously both the stress and strain at failure are greatly increased as the

strain rate is increased. The interpretation, in the context of this model, is that,

rather than a pure rate dependence, damage evolution is lagging the

application of load for the more rapid deformation. It is also observed that

ultimate failure is identified as complete loss of load carrying capability

through loss of modulus El1 in (8.7) as V1-+1. At low strain rates (10 and 100

sec"1 in Figure 9.4), this model is seen to be a simplistic ultimate strength

criterion with the load carrying capacity falling rapidly for o1 1>GG1.

The test conditions in Roylance's paper [3] are simulated with homogeneous

deformation fields by constructing rectangular and triangular strain pulses.

The compressive incident strain pulses were then augmented with the tensile

release pulse from a presumed free back face and superposed as if on the
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Figure 9.4 V1 damage at various constant strain rates.

spallation plane, defined as that position nearest the back face which first feels

maximum tension. This approach is somewhat simplistic and it drives the

damage without feedback to the deformation field, but it does provide a

prediction for softening of the elastic moduli and it is much easier to

implement than is a full-blown wave propagation and damage analysis. Using

the constructed strain pulses, the stress and damage histories are compute 1

with the model. Wave propagation calculations are not really justified or

appropriate for comparison with experimental results unless fairly extensive

instrumentation and data acquisition has provided quantitative rather than

qualitative data. Some of these more extensive analyses are presented in

Section X.

Ro.lance considered exploding foil experiments on graphite/epoxies with
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pulse shapes being approximately triangular if the pressure pulse from the

explosion directly encountered the material and rectangular if the pressure

pulse drove a flyer plate into the sample material. The three pulses associated

with spallation thresholds were rectangular of amplitude 90 MPa and duration

1.08 jtsec, rectangular of amplitude 125 MPa and duration 0.67 ptsec, and

tiiangular with amplitude 143 MPa and duration 1.42 ttsec. These pulses all

deliver an impulse to the material of approximately 1 kilotap (1 kilotap= 1

kilobar-Asec= 100 Paojisec). Specifically, if the pulse rises (and decays for the

rectangular shapes) are instantaneous, which will be assumed here, then the

impulses are 0.972, 0.837, and 1.015 kilotaps, respectively, in the order listed

above. These stress pulses were converted to strain deformation pulses

assuming the virgin elastic properties given in Table 9.3 and the uniaxial strain

symmetry condition. The strain pulses are shown in Figure 9.5 with the tensile

release wave appended as expected for the deformation on the spallation

plane. Also shown in Figure 9.5 are the corresponding predicted stress pulses

with a slight bit of stress relaxation due to damage softening during the tensile

portion of the deformation. The V1 damage as a function of time is shown as

the third transient record in Figure 9.5. Since the initial damage threshold

OGI0=50 MPa from Table 9.3 is obviously exceeded in each of the

deformations, it is not surprising that damage does occur. It is observed that

the predicted reduction in the ElI modulus, from Equation (8.7), is V1
2 and

only ranges from approximately 2-12%. This is, perhaps, in the appropriate

range to be identified as spallation threshold, as was done by Roylance in [3].

Roylance had speculated that the approximately 1 kilotap impulse delivered in

each case was indicative of an impulse criterion for spallation threshold. If the

present damage model is representative of real material damage behavior, then

impulse is not an appropriate criterion (accounting for the fairly wide

variations in damage at approximately equal impulse) and, instead, the load

sustained by the material above damage threshold controls the evolution of
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Figure 9.5 Strain, stress, and damage histories predicted for
approximately 1 kilotap pulses of various shapes.
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damage. Conclusions on these questions await further test results and

correlations with damage models. It is concluded that softening is a very

important part of the total dynamic material response and that the CDM

approach is a convenient and appropriate way to handle these situations.

For the purpose of illustrating more substantial damage in a dynamic

deformation, the strain deformation pulses of Figure 9.5 were magnified and

the softening and damage were recalculated. These results are shown in Figure

9.6 for an impulse delivered of approximately twice that of Figure 9.5. The

stress magnitudes were adjusted such that the compressive part of the pulse for

all three cases delivers exactly 2 kilotaps. This is done by making the 1.08 jisec

duration rectangular pulse have magnitude 185.2 MPa, the 0.67 gsec pulse

have magnitude 298.5 MPa, and the 1.42 gsec triangular pulse have magnitude

281.7 MPa. It is seen in Figure 9.6 that now the softening and damage are very

dramatic with rapid softening immediately upon application of substantial

tensile overstress and damage levels almost completely to V1=I where the

material has lost all stiffness. This inability to support large tensile stresses on

the spallation plane is what alters the expected (no loss of integrity) back-face

wave response (usually in the form of back face particle velocity) and forms

what is called a spallation signature.
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X. PRELIMINARY APPLICATION OF DAMAGE MODEL TO TWO
DIMENSIONAL PROBLEMS

In order to illustrate the application of the damage model to two dimensional

axisymmetric problems, the response of the graphite/epoxy plate with

diameter 267 mm subjected to shock loading from underwater explosive will

be reconsidered. The material properties to be used in the simulations will be

those given in Section IV for the virgin material along with the damage

parameters used in Threshold Model B of Section IX. In addition to the

parameters considered there, the fully two-dimensional treatment requires

specification of several additional parameters related to damage under shear

stresses. The parameters used here are estimated and intended principally to

demonstrate application of the material model. A complete summary of the

parameters used is given in Table 10.1.

As discussed in Section VI, the use of local zero displacement boundary

conditions along the outer diameter of the plate results in very large stresses

concentrated in that area. In order to avoid having damage occur only along

the outer edge, the plate will be taken to be free in the z-direction. This results

in a somewhat higher fundamental frequency of the plate than the simply

supported condition considered in Section VI and lower radial stress for a

given loading history. Thus, somewhat higher pressures are required to cause

material damage than would be needed in a plate supported along the outer

diameter.

The introduction of damage into the material constitutive behavior causes

nonlinearities in the response so that use of nondimensionalized parameters in

examining results as was done in Section VI is not possible. The pressure

history used here is one selected to result in a level of damage in the plate to

illustrate the application of the model. The pressure distribution of the incident
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Table 10.1 Material Properties for Two

Dimensional Problems

E01 (MPa) 10,300
E0, (MPa) 69,000

• v 0.04

v° ,0.30

0G° , (MPa) 7,170

al=at2=a 3  0.75

a4  0.95

CGSo (MPa) 170

CGSO (MPa) 340

nS  1

'is (sec) 0.0014

*GSI=MGSO 1.0

oGlO (MPa) 50

GI0 (MPa) 50

n, 2

iI (sec) 4xl 0-6

OGI I=OG10 0.5

Cult 0.015
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wave applied at the surface of the fluid is chosen to produce an incident

pressure at the surface of the plate at R = 0 of 160 MPa with a characteristic

time 0t of 0.1130 msec. The radial distribution of P and 0 is then determined

by Equations (5.1) and (5.3) respectively. In the first simulation the 50.8 mm

thick plate is considered. Because of the presence of nonlinearity, results are

presented in terms of the z-direction displacement history rather than stress

history. In order to eliminate the rigid body motion component of

displacement associated with the free plate, the quantity that is presented is the

displacement of the center of the rear surface minus the displacement at the

edge of the rear surface. The effect of damage is seen by a comparison to the

plate response with the absence of damage. Figure 10.1 shows the computed

0

U.

I -I I I I I I I I I

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

TIME *10-5
Figure 10.1 Displacement history (in meters) in 50.8 mm thick
graphite/epoxy plate subjected to spherical shock wave (with damage
-, without damage .....
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displacement history with and without the effects of damage. As seen in the

figure, the response of the plate for the two computations is almost identical,

indicating minimal amounts of damage. The damage contours themselves are

shown in Figures 10.2 and 10.3 at a time of 500 gs. The VI-damage in Figure

Figure 10.2 V1 damage contours at 500 jisec (N=0.95, 0=0.25).

Figure 10..3 Vs damage contours at 5001 isec (0=0.10).

10.2 is concentrated near the z-axis, where the direct through thickness tensile

stresses are greatest and shear stress is minimal indicating that the
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delamination damage occurs from the stress waves propagating through the

thickness of the material. The contour shown is for a value of 0.25, which

represents a sub-spallation condition, with some reduction in the material

stiffness. The Vs-damage contour is shown in Figure 10.3. As expected the

damage occurs at the upper and lower surface of the plate near the center as

the plate oscillates, producing alternating tension and compression on each

face. Again though, the level of the damage is fairly low so that the reduction

of stiffness is not substantial, which is consistent with the minor differences

noted in the displacement history.

In the next simulation the effect of a higher level of damage is considered. A

25.4 mm thick plate subjected to a shock wave of twice the amplitude as the

previous simulation, but retaining the same spatial and temporal distribution,

will be investigated. The same measure of displacement will be used to study

the effect of damage on the plate response. The displacement history for the

simulation is shown in Figure 10.4. Here it can be seen that the damage has

greatly influenced the response of the plate after the initial oscillation. The

stiffness has been reduced to such extent that the displacements at the time of

400 tsec for the plate with and without damage are almost completely out of

phase.

The distribution of damage is examined at both early and late time. The VI-

damage distribution is shown in Figure 10.5 at a time of 125 lisec. Contours

Figure 10.5 V, damage contours at 125 gsec (N=0.95, 0=0.25).
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Figure 10.4 Displacement history (in meters) in 25.4 mm thick
graphite/epoxy plate subjected to spherical shock wave (with damage
-, without damage ..... ).

z- shown for two levels of damage, one representing onset or partial damage

and one representing delamination. As seen in the figure, there is no damage

along the z-axis, indicating that the damage is a result of shear stresses not the

through-thickness tensile stresses as was the case in the 50.8 mm thick plate.

The contours of the VS-damage are shown in Figure 10.6. At this time tension

N! [

Figure 10.6 Vs damage contours at 125 psec (N=0.1, 0=0.05).
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has only occurred on the rear surface of the plate, thus there is no Vs-damage

on the front surface. The V1 and Vs damage contours at 500 Rtsec are shown

in Figures 10.7 and 10.8, respectively. Examination of the damage contours

Figure 10.7 V1 damage contours at 500 psec (0=0.95).
... . . ..

Figure 10.8 VS damage contours at 500 psec (N=0.10, 0= 0.05).

shows that the delamination or V, damage extends almost entirely across the

radius of the plate (in effect saying that complete delamnination has occurred),

thus preventing shear transfer through the thickness.

The final example to be considered is for the 50.8 mm thick plate subjected to

320 MPa with the same Ot=.l130 msec. Thbe V I-damage contours are shown

at the time of 500 Jisec in Figure 10.9. As seen in Figure 10.9, there is a large

region of delamidnation damage near the z axis and also one approximately at

two thirds of the plate radius. The first of these is attributed to the through-

thickness tensile stresses that develop while the second region is attributed to

shear stresses since this is a region of inflection in the plate bending. This can

also be seen by examining the deformed geometry of the plate in Figure 10. 10
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Figure 10.9 V1 damage contours at 500 sec (0=0.95).

Figure 10.10 Deformed geometry of 50.8 mm thick graphite/epoxy

plate subjected to spherical shock wave.

at the time of 500 jisec. The central portion of the plate shows a region

disturbed by damage corresponding to the first contour of critical damage. As

VIl--I several of the material coefficients go to zero, which permits the

material to deform extensively under very small loads, resulting in the

distorted region seen in the figure. The other region of high V1 damage is

manifested by the large shear distortion seen across the thickness of the plate.

The softening of the material with damage results in a localized band in which

the distortion takes place somewhat analogous to the shear bands seen in

metals under shear deformation.
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XI. SUMMARY

This report has concentrated on the early time material response of thick

composite plates by presenting the development and demonstration of

techniques and models appropriate for response predictions and experimental

correlation. Various levels of theoretical and numerical prediction techniques

are compared with available experimental data and with each other. The time

and space regimes of interest for shock wave damage clearly include both

body wave response and early flexural and shear vibration modes when two-

dimensional plate configurations are considered. Finite-element calculations

are presented which show direct through-thickness wave arrivals which

transition into flexural vibrations as time progresses. Specific findings are

listed below.

The results presented indicate that the use of continuum finite

elements in conjunction with silent boundary conditions to

represent the fluid is an appropriate modelling technique, at least

for two-dimensional problems. The technique allows for the

effects of material nonlinearity and cavitation to be included

without a tremendous computational penalty. The results indicate,

however, that a more refined mesh than that considered here

should be used for comparing computational results to actual

experiments or for predictions of component response, particularly

where through thickness stress is important. For predominately

flexural behavior the modelling technique employed gave results

which agreed extremely well with analytical results.

The use of zero displacement boundary conditions at the edge of

the plates results in very high local stresses. For cases of modelling
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a composite material EBT, an attempt to simulate the actual plate

support conditions, as much as is feasible, should be made. Use of

contact surfaces may be beneficial.

Results of calculations of spherical shock waves on steel and

graphite/epoxy plates show that *he momentum density

transmitted to the graphite epoxy plate is approximately 50% less

than that transmitted to the steel plate due to its lower mechanical

impedance. This is significant since this momentum density must

be resisted by the radial stresses in the plate. The calculations also

show that for plates of 267 mm diameter and 25.4 mm thickness

the displacement of the graphite/epoxy is approximately twice that

of the steel, but at one fifth the weight, which demonstrates a

distinct advantage of the composite material. However, due to the

relatively slow wave speed in the through thickness direction of the

composite plate, tensile stresses develop even under spherical

waves. These tensile stresses are particular significant due to the

low transverse strength of the composite, indicating that spallation

in the thick composite is a possible damage mode.

A continuum damage model was developed for application to thick

composite materials subjected to high-rate dynamic loadmg. The

model is capable of describing the rate dependent, nonlinear

behavior of the composite material. The model compares

favorably to the limited available experimental data at higl. rates

for cases of idealizea homogeneous deformation.

Preliminary application of the model to multi-dimensional

problems was performed to illustrate its capability. The results
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obtained appear reasonable, but were not compared to experiments

due to lack of available data. There also are a number of

parameters in the model that are difficult to determine and thus far

have been estimated, with some parametric studies conducted to

assess the sensitivity of the results. Even with these difficulties the

model appears to be a very promising step to describe the material

response under these transient loadings.

This work is supported by the DARPA Naval Technology Office and that

support is greatly appreciated.
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